The content of this document was written in 2005, or earlier, by Mark Adam Douglass.

It has been reproduced here, with minor changes. Changes include: spelling, punctuation, and grammar, as well as some changes in layout. Otherwise, most of the content reflects the original piece.

Whilst many of the ideas are correct, some errors in thinking and judgment may occur, and one of the reasons for revisiting this piece. Another main reason is to look at these ideas in more depth.

Siteswap Families

I have seen many lists of siteswaps, personal and on the web, with many of them just random lists of numbers, and only sorted to amount of objects, and others are organized according to highest value in siteswap, and the length of a siteswap.

What I have done is to organize siteswaps into families.

I do this for two major reasons:

Remember, when working on siteswaps that there is no definite height for a particular number. They need to be correct relative to one another. One major problem I have noticed is that people have their throws too close together. This will cause crashes, or make you loose your timing.

Also, I think that 3’s in siteswap are one of the hardest heights to throw, and most people juggle them too high in relation to their other throws. Either make the 3’s smaller, or the other throws higher, or both.

Alternating

High Low Ground State Tables

This family of siteswaps involves a high throw, or repetition of the same high throws, followed by a low throw, or repetition of the same low throws. These tables enable you to focus on only two heights at a time. This is helpful when you are learning siteswaps, or learning new throws in siteswaps, because it is harder to throw a whole lot of different height throws in combination, particularly when you are still developing the heights and rhythms that suit you when running siteswaps.

These tables can be used for building up to a number, for example when working on 7 balls, you can work on all patterns with less balls that have a 7 in them. The 5 ball and 6 ball siteswaps are particularly good. Another example is that if you are working on 4 club flats, you could work on the 3 club patterns with 4’s in them, on flats.

You can also use the tables to create more complicated siteswaps. Wherever you see a repetition of numbers, you can replace them with a siteswap from the table with that amount of objects.

For example, take the two ball siteswap 411. Replace the 11 with the one ball siteswap 20, and you get 420.

Taking the example further lets take 6222. You can then replace the 222 with 312 or 231 or 330 or 411 or 420 and get 6312 or 6231 or 6330 or 6411 or 6420.

Another example is to replace the larger numbers. Lets take 552, and replace it with the five ball siteswap 64 to get 642. You can also do the reverse and make more complicated siteswaps simpler.

They are also just nice siteswaps to juggle. Enjoy!

1 object
20
300
4000
50000
2 Objects  
31 330
411 4400
5111 55000
61111 660000
3 Objects    
42 441 4440
522 5511 55500
6222 66111 666000
72222 771111 7770000
4 Objects      
53 552 5551 55550
633 6622 66611 666600
7333 77222 777111 7777000
83333 882222 8881111 88880000
5 Objects        
64 663 6662 66661 666660
744 7733 77722 777711 7777700
8444 88333 888222 8888111 88888000
94444 993333 9992222 99991111 999990000
6 Objects          
75 774 7773 77772 777771 7777770
855 8844 88833 888822 8888811 88888800
9555 99444 999333 9999222 99999111 999999000
a5555 aa4444 aaa3333 aaaa2222 aaaaa1111 aaaaaa0000
7 Objects            
86 885 8884 88883 888882 8888881 88888880
966 9955 99944 999933 9999922 99999911 999999900
a666 aa555 aaa444 aaaa333 aaaaa222 aaaaaa111 aaaaaaa000
b6666 bb5555 bbb4444 bbbb3333 bbbbb2222 bbbbbb1111 bbbbbbb0000

Pyramid – up by one

These are very nice looking patterns, because the throws keep getting higher, then drop down low and grow again.

2 objects 3 objects 4 objects 5 objects 6 objects 7 objects
2 3 4 5 6 7
312 423 534 645 756 867
34012 45123 56234 67345 78456 89567
  4560123 5671234 6782345 7893456 89a4567
    567801234 678912345 789a23456 89ab34567
      6789a012345 789ab123456 89abc234567
        789abc0123456 89abcd1234567
          89abcde01234567

Pyramid – down by two

Objects peak at the same time in this family of patterns (except for the single digits). I believe this occurs when there is difference of 2 in right/left hand throws, and a difference of 4 in right/right hand (or left/left hand).

2 objects 3 objects 4 objects 5 objects 6 objects 7 objects
          7
        6 86
      5 75 975
    4 64 864 a864
  3 53 753 9753 b9753
2 42 642 8642 a8642 ca8642
31 531 7531 97531 b97531 db97531
420 6420 86420 a86420 ca86420 eca86420

Period 2 siteswaps

These patterns have all their entry and exit throws. Compare these to the “Pyramid – up by one” patterns above.

2 objects 3 objects 4 objects 5 objects 6 objects 7 objects
31 42 53 64 75 86
3 40 1 4 51 2 5 62 3 6 73 4 7 84 5 8 95 6
  45 60 12 56 71 23 67 82 34 78 93 45 89 a4 56
    567 80 123 678 91 234 789 a2 345 89a b3 456
      6789 a0 1234 789a b1 2345 89ab c2 3456
        789ab c0 12345 89abc d1 23456
          89abcd e0 123456

Period 3 siteswaps

These patterns have all their entry and exit throws. The first pattern for each number of balls is a combination of period 2 ground state and the base pattern. The ground state patterns (no entry/exit throws) can be used in combination with the ground state tables above.

2 objects 3 objects 4 objects 5 objects
      645
      663
      6 672 4
      744
      753
      66 771 3
      6 67 780 2 4
      66 825 3
    534 6 834 4
    552 6 852 4
      66 861 3
      66 8 690 25 3
    5 561 3 6 67 915 2 4
    633 7 933 44
    642 7 942 44
    55 660 2 6 67 960 2 4
    55 714 2 66 8 a14 25 3
  423 5 723 3 6 8 a23 34 4
  441 5 741 3 6 8 a41 34 4
    55 750 2 66 8 a50 25 3
  4 450 2 5 56 804 1 3 6 67 9 b04 15 2 4
  522 6 822 33 7 9 b22 33 44
  531 6 831 33 7 9 b31 33 44
  44 603 1 55 7 903 14 2 66 8 a c03 14 25 3
312 4 612 2 5 7 912 23 3 6 8 a c12 23 34 4
330 4 630 2 5 7 930 23 3 6 8 a c30 23 34 4
411 5 711 22 6 8 a11 22 33 7 9 b d11 22 33 44
420 5 720 22 6 8 a20 22 33 7 9 b d20 22 33 44
3 501 1 4 6 801 12 2 5 7 9 b01 12 23 3 6 8 a c e01 12 23 34 4
4 600 20 5 7 900 20 22 6 8 a c00 20 22 33 7 9 b d f00 20 22 33 44

Family of patterns that build up to b444b333444 – all are ground state

4 objects          
5353          
63623 633633        
737223 7337233 73337333      
8382223 83382233 833382333 8333383333    
93922223 933922233 9333922333 93333923333 933333933333  
a3a222223 a33a222233 a333a222333 a3333a223333 a33333a233333 a333333a333333
5 objects          
6464          
74734 744744        
848334 8448344 84448444      
9493334 94493344 944493444 9444494444    
a4a33334 a44a33344 a444a33444 a4444a34444 a44444a44444  
b4b333334 b44b333344 b444b333444 b4444b334444 b44444b344444 b444444b444444

Pirouettes

With pirouettes you generally need a 22, 20 or 00 to do a pirouettes (or more of these in a row)

Basic Pirouettes

These patterns can be used in combination with the ground state tables or other ground state patterns.

  2 objects 3 objects 4 objects 5 objects 6 objects 7 objects
1 up 420 522        
2 up 4400 5520 6622      
3 up   55500 66620 77722    
4 up     666600 777720 888822  
5 up       7777700 8888820 9999922
6 up         88888800 99999920
7 up           999999900

7792244 variations

3 objects 4 objects 5 objects 6 objects 7 objects
72222 682233 7792244 888a2255 9999b2266

777790044 variations

3 objects 4 objects 5 objects 6 objects 7 objects
5570022 66680033 777790044 88888a0055 999999b0066

779227722 variations with more/less objects

3 objects 4 objects 5 objects 6 objects 7 objects
72222 6822622 779227722 888a2288822 9999b22999922
7225500 68226620 779227722 888a228842 9999b229944
5570022 66820622 779227722 88a4288822 99b44999922
557005500 668206620 779227722 88a428842 99b449944

Notes:

Two stage pirouettes

3 objects 4 objects 5 objects 6 objects 7 objects
5570022 66880022 779990022 88aaaa0022 99bbbbb0022

Can be done as half pirouette/half pirouette, half pirouette/full pirouette, full pirouette/half pirouette, and full pirouette/full pirouette

Couple of other notable patterns for 5 objects: d66226622 and 7777b006622

Synchronous and Synchronous Multiplex

Maximum Height 4

3 objects – 4/2      
(4,2) (4x,2x) (4,2x)* (4x,2)*
(4,2)(2x,4x) (4,2)(4x,2)* (4x,2)(4x,2x)*  
(4x,2)(4,2x) (4,2x)(4,2)* (4x,2x)(4,2x)*  
(4,2x)(4,2)(4x,2) (4,2)(4x,2)(4x,2x)*    
(4x,2)(4x,2x)(4,2x) (4x,2x)(4,2x)(4,2)*    
(4,2)(4,2x)(4x,2x)(4,2x)      
3 objects – 4/2/0  
([4x,4],0)(4x,0)(2,4x)(2,4x) ([4x,4],2x)(4x,0)(2,2x)
([4x,4],0)(4x,0)(4x,2)* ([4x,4],2x)(4,0)(2x,2)*
4 objects  
(4,4) (4x,4x)
4 objects – 4/2      
([4x,4],2)(2,4x) ([4x,4],2)(4,2x) ([4x,4],2x)(2,4) ([4x,4],2x)(4x,2x)
([4x,4],2)(4x,2)* ([4x,4],2)(2x,4)* ([4x,4],2x)(4,2)* ([4x,4],2x)(2x,4x)*
5 objects - 4/2
([4x,4],2)*

Maximum Height 6

6/4 Family

Note:

3 objects - 6/4/2/0
(4,6x)(6,0)(2x,0)
(6,4x)(6,0)(2x,0)
3 objects – 6/4/2/0    
(6,4)(2,0) (6,4)(0,2x)* (6,4)(2,0)(4x,2)*
(6x,4x)(0,2) (6x,4x)(2x,0)* (6x,4x)(0,2)(2,4x)*
(6,4x)(2x,0) (6,4x)(0,2)* (6,4x)(0,2)(4,2)*
(6x,4)(0,2x) (6x,4)(2,0)* (6x,4)(2,0)(2,4)*
4 objects – 6/4/2  
(6,4)(2,4) (6,4)(4x,2x)
(6x,4x)(4,2) (6x,4x)(2x,4x)
(6,4x)(4x,2) (6,4x)(2x,4)
(6x,4)(2,4x) (6x,4)(4,2x)
   
(6,4)(2,4)* (6,4)(4x,2x)*
(6x,4x)(4,2)* (6x,4x)(2x,4x)*
(6,4x)(4x,2)* (6,4x)(2x,4)*
(6x,4)(2,4x)* (6x,4)(4,2x)*

Note:

5 objects – 6/4      
(6,4) (6x,4x) (6,4x)* (6x,4)*
(6,4)(4x,6x) (6,4)(6x,4)* (6x,4)(6x,4x)*  
(6x,4)(6,4x) (6,4x)(6,4)* (6x,4x)(6,4x)*  
(6,4x)(6,4)(6x,4) (6,4)(6x,4)(6x,4x)*    
(6x,4)(6x,4x)(6,4x) (6x,4x)(6,4x)(6,4)*    
(6,4)(6x,4)(6x,4x)(6,4x)      

6/2 Family

4 objects – 6/2      
(6,2) (6x,2x) (6,2)* (6x,2x)*
(6,2)(6x,2x) (6,2x)(6x,2)* (6x,2)(6x,2)*  
(6,2)(2x,6x) (6x,2)(6,2x)* (6,2x)(6,2x)*  
(6,2)(6,2x)(6x,2) (6x,2)(6x,2)(6x,2x)*    
(6,2x)(6x,2x)(6x,2) (6,2x)(6,2x)(6,2)*    
(6,2)(6x,2)(2x,6x)(6,2x)      
(6,2)(2,6x)(2x,6x)(2x,6)      
       
(6,6)(2,2) (6,6)(2x,2x) (6x,6x)(2,2) (6x,6x)(2x,2x)

Note:

5 objects - 6/2      
(6,6)(6,2) (6,6)(6x,2x) (6,6)(6,2x)* (6,6)(6x,2)*
(6,6)(6,2)(6,6)(2x,6x) (6,6)(6,2)(6,6)(6x,2)* (6,6)(6x,2)(6,6)(6x,2x)*  
(6,6)(6x,2)(6,6)(6,2x) (6,6)(6x,2x)(6,6)(6,2x)* (6,6)(6,2x)(6,6)(6,2)*  
(6,6)(6,2x)(6,6)(6,2)(6,6)(6x,2) (6,6)(6,2)(6,6)(6x,2)(6,6)(6x,2x)*    
(6,6)(6x,2)(6,6)(6x,2x)(6,6)(6,2x) (6,6)(6x,2x)(6,6)(6,2x)(6,6)(6,2)*    
(6,6)(6,2)(6,6)(6x,2)(6,6)(6x,2x)(6,6)(6,2x)      

Note:

5 Objects - 6/4/2

Combining these patterns:

(6,6)(6,2) (6,6)(6x,2x) (6,6)(6,2x)* (6,6)(6x,2)*

With these patterns:

(6,4) (6x,4x) (6,4x)* (6x,4)*

We get:

  (6,4) (6x,4x) (6,4x) (6x,4)
(6,6)(6,2) (6,6)(6,2)(6,4) (6,6)(6,2)(4x,6x) (6,4x)(6,6)(6,2)* (6,6)(6,2)(6x,4)*
(6,6)(6x,2x) (6,6)(6x,2x)(4,6) (6,6)(6x,2x)(6x,4x) (6,6)(6x,2x)(6,4x)* (6x,4)(6,6)(6x,2x)*
(6,6)(6,2x) (6,6)(6,2x)(6,4)* (6x,4x)(6,6)(6,2x)* (6,6)(6,2x)(4x,6) (6,6)(6,2x)(6x,4)
(6,6)(6x,2) (6,4)(6,6)(6x,2)* (6,6)(6x,2)(6x,4x)* (6,6)(6x,2)(6,4x) (6,6)(6x,2)(4,6x)
5 objects - 6/4/2 (Multiplex Variations)    
([6x,6],4)(2,2)* ([6x,6],4)(2,2x) ([6x,6],4x)(2,2) ([6x,6],4x)(2x,2)*
([4x,4],6)(4,2)* ([4x,4],6)(2,4x) ([4x,4],6x)(2,4) ([4x,4],6x)(4x,2)*
([6,4],2)(2,6) ([6,4],4)(2,4) ([6,4],6)(2,2)  
([6,4],2x)(6,2)* ([6,4],4)(4x,2)* ([6,4],6)(2x,2)*  
([6x,4x],2)(6x,2)* ([6x,4x],4x)(4,2)* ([6x,4x],6x)(2,2)*  
([6x,4x],2x)(2,6x) ([6x,4x],4x)(2,4x) ([6x,4x],6x)(2,2x)  
([6,4x],2)(2,6x) ([6,4x],4x)(2,4) ([6,4x],6)(2,2)*  
([6,4x],2x)(6x,2)* ([6,4x],4x)(4x,2)* ([6,4x],6)(2,2x)  
([6x,4],2)(6,2)* ([6x,4],4)(4,2)* ([6x,4],6x)(2,2)  
([6x,4],2x)(2,6) ([6x,4],4)(2,4x) ([6x,4],6x)(2x,2)*  

Maximum Height 8

5 objects – 8/2      
(8,2) (8x,2x) (8,2x)* (8x,2)*
(8,2)(2x,8x) (8,2)(8,2x)* (8,2x)(8x,2x)*  
(8x,2)(8,2x) (8x,2)(8,2)* (8x,2x)(8x,2)*  
(8x,2)(8x,2)(8x,2)* (8,2x)(8,2x)(8,2x)*    
(8x,2)(8x,2)(8x,2)(8x,2x)* (8,2x)(8,2x)(8,2x)(8,2)*    
(8,2)(8,2x)(8x,2x)(8x,2)      

Note:

5 objects – 8/4      
(8,4)(4,4) (8x,4x)(4,4) (8,4x)(4,4)* (8x,4)(4,4)*

Note:

5 objects - 8/6/4/2

Combining this family:

(6,4) (6x,4x) (6,4x)* (6x,4)*

With this family:

(8,2) (8x,2x) (8,2x)* (8x,2)*

We get:

  (6,4) (6x,4x) (6,4x) (6x,4)
(8,2) (8,2)(4,6) (8,2)(6x,4x) (6,4x)(8,2)* (8,2)(6x,4)*
(8x,2x) (8x,2x)(6,4) (8x,2x)(4x,6x) (8x,2x)(6,4x)* (6x,4)(8x,2x)*
(8,2x) (6,4)(8,2x)* (8,2x)(6x,4x)* (8,2x)(4x,6) (8,2x)(6x,4)
(8x,2) (8x,2)(6,4) (6x,4x)(8x,2) (8x,2)(6,4x) (8x,2)(4,6x)

Combining the 3 object patterns 4/2 with the 7 object patterns 8/6 (average of 3 and 7 is 5).

  (4,2) (4x,2x) (4,2x) (4x,2)
(8,6) (8,6)(4,2) (8,6)(2x,4x) (8,6)(4,2x)* (4x,2)(8,6)*
(8x,6x) (8x,6x)(2,4) (8x,6x)(4x,2x) (4,2x)(8x,6x)* (8x,6x)(4x,2)*
(8,6x) (4,2)(8,6x)* (8,6x)(4x,2x)* (8,6x)(2x,4) (8,6x)(4x,2)
(8x,6) (8x,6)(4,2)* (4x,2x)(8x,6)* (8x,6)(4,2x) (8x,6)(2,4x)
5 objects - 8/6/2      
([8,6],2)(2,2) ([8x,6x],2)(2,2) ([8,6x],2x)(2,2) ([8x,6],2)(2,2x)
([8,6],2x)(2,2)* ([8x,6x],2)(2x,2)* ([8,6x],2)(2,2)* ([8x,6],2x)(2x,2)*

Pirouettes

5 objects - 6/4 versions – 3up/5up

  3up (like 77722) 5up (like 7777700)
(6,4) (8,4)(8,6)(2,2) (8,4)(8,6)(8,6)(0,0)
(6x,4x) (8x,4x)(8x,6x)(2,2) (8x,4x)(8x,6x)(8x,6x)(0,0)
(6,4x)* (8,4x)(6x,8)(2,2) (8,4x)(6x,8)(8,6x)(0,0)
(6x,4)* (8x,4)(6,8x,)(2,2) (8x,4)(6,8x)(8x,6)(0,0)
  3up (like 96622) 5up (like 9994400) 5up (like 777790044)
(6,4) (10,4)(6,6)(2,2) (10,4)(10,8)(4,4)(0,0) (8,4)(8,6)(10,6)(0,0)(4,4)
(6x,4x) (10x,4x)(6,6)(2,2) (10x,4x)(10x,8x)(4,4)(0,0) (8x,4x)(8x,6x)(10x,6x)(0,0)(4,4)
(6,4x)* (10,4x)(6,6)(2,2) (10,4x)(8x,10)(4,4)(0,0) (8,4x)(6x,8)(10,6x)(0,0)(4,4)
(6x,4)* (10x,4)(6,6)(2,2) (10x,4)(8,10x)(4,4)(0,0) (8x,4)(6,8x)(10x,6)(0,0)(4,4)
  3up/2up 2 stage (like 779227722) 5 up two stage (like 779990022)
(6,4) (8,4)(10,6)(2,2)(8,6)(2,2) (8,6)(10,6)(10,8)(0,0)(2,2)
(6x,4x) (8x,4x)(10x,6x)(2,2)(8x,6x)(2,2) (8x,6x)(10x,6x)(10x,8x)(0,0)(2,2)
(6,4x)* (8,4x)(6x,10)(2,2)(8,6x)(2,2) (8,6x)(6x,10)(10,8x)(0,0)(2,2)
(6x,4)* (8x,4)(6,10x)(2,2)(8x,6)(2,2) (8x,6)(6,10x)(10x,8)(0,0)(2,2)